
International Association of Privacy Professsionals
iapp.org

1

Some Privacy Practices May
Result in Under-Reporting
of Breach Incidents

There is a belief, at least among some
privacy practitioners, that, if data
was encrypted when it was stolen by

a hacker, then the theft incident does not
meet the legal definition of a data breach
and therefore does not trigger reporting and
notification obligations. The reasoning is
that encryption preserves confidentiality by
rendering the data unreadable by hackers,
and so there is no reasonable likelihood
of harm to the data subjects. Privacy
compliance practices that incorporate
this belief are bolstered by an “encryption
exception” to reporting requirements in
some regulations, such as Article 34(3)(a) of
the EU General Data Protection Regulation
and some U.S. state laws.

Unfortunately, though, the reasoning is
quite often mistaken, as explained in a
chart provided below that identifies seven
different vulnerability scenarios whereby
encryption does not preserve confidentiality
of stolen data. Simply put, many widespread
key management practices are not
sufficiently secure to justify assuming that
the stolen data cannot be decrypted and
thus fully exposed and exploited. If the
legal or compliance expert, who is handling
the incident response, does not thoroughly
investigate the encryption system and
key management practices that were
implemented, there is no way to properly
ascertain whether a potentially applicable
encryption exception is being properly
applied or misused to avoid reporting a
legitimate breach.

The exploitability of a weak key
management practice is something that

I know first-hand. At an earlier point in
my career, when I was working as a white
hat hacker (aka “red team penetration
tester”) and test planner, I was presented
with a challenge: Try to crack a secure
launcher (an anti-hacking protection
measure), which used AES-256 encryption
to protect a critical file. Since AES-256 is
widely considered to be a highly secure
encryption method that requires billions
of years to crack in a brute force attack,
the people who presented the challenge to
me expressed confidence that I would be
unsuccessful.

However, I beat the encryption in only
seven minutes, totally defeating the
protection. How could I do that? There
was a human error in the key management
process. The intended key management
system was solid … on paper, anyway. But
humans were involved, and it required only
just one of them to make a single, easy
mistake to enable me to compromise the
key.

Included within the description of the
vulnerability chart below is a high-level
description of the hacking tool that I
created to exploit the key management
error. I seriously doubt that I was the first
one to have had such an idea; instead,
I expect many malicious hackers have
already created and used similar tools.
But fear not, because now, anyone who
is even minimally competent in hacking
and programming, and who reads this
article, will be able to easily create their
own version of the tool to use against your
encrypted data.

By Kelce S. Wilson, CIPP/E, CIPP/US, CIPM

International Association of Privacy Professsionals
iapp.org

2

Nice thought, isn’t it? So … perhaps you
might want to reconsider your reliance
on the encryption exception or at least
contemplate the suggestions that follow
the chart.

In defense of privacy practitioners who
had previously adhered to the belief that
encryption renders data theft merely an
incident rather than a breach, several
laws and regulations tout encryption as a
data security measure without thoroughly
emphasizing how high the risk of key
compromise can be in many scenarios.

For example, the April 27, 2016, version of
the EU General Data Protection Regulation
itself does not mention key management
considerations when describing its version
of the encryption exception, although it
is addressed by the Article 29 Working
Party. Article 34(1) of the GDPR identifies a
notification trigger:

Communication of a personal data
breach to the data subject

1.	 When the personal data breach
is likely to result in a high risk
to the rights and freedoms of
natural persons, the controller
shall communicate the personal
data breach to the data subject
without undue delay. (emphasis
added)

And then, just a paragraph later, Article
34(3)(a) states the exception for encrypted
data:

3.	 The communication to
the data subject referred
to in paragraph 1 shall not
be required if any of the
following conditions are met:
(a) the controller has
implemented appropriate
technical and organisational
protection measures … in
particular those that render
the personal data unintelligible
to any person who is not
authorised to access it, such
as encryption; …. (emphasis
added)

This description of the exception does not
explicitly mention requiring sufficiently
secure key management practices that
theft or other compromise of the key
is rendered unlikely. Other parts of
the GDPR also mention encryption,
such as the Whereas clause 83, Article
6(4), and Article 32(1). However, none
of those passages mentions secure
key management practices either. The
Article 29 Working Party guidelines did
address key confidentiality October 3,
2017, requiring that “the key was not
compromised in any security breach….”

If looking only at the text of the GDPR,
though, a company can experience a theft
of encrypted data that truly should be
defined as a breach because the decryption
key has likely also been compromised,
but yet the company might consider
itself exempted from any reporting or
notification obligation. This situation
then becomes an unreported breach,
contributing to potential under-reporting.
Given the severity of potential GDPR
penalties, how many data protection
officers might be willing to eagerly
embrace the exception without thoroughly
investigating all potential vulnerability
scenarios?

Several laws and regulations tout
encryption as a data security measure
without thoroughly emphasizing how
high the risk of key compromise can

be in many scenarios

International Association of Privacy Professsionals
iapp.org

3

How many DPOs even know to consider
this type of risk? How thoroughly is
key management addressed in your risk
assessments? This creates an issue that
compliance does not necessarily mean
security, when compliance personnel
merely works with checklists without
having a proper technical comprehension
of real-world hacking threats.

The problem of potential breach under-
reporting can also reach into the U.S.,
although the 2012 version of the book
“U.S. Private-Sector Privacy,” published by
the International Association of Privacy
Professionals, does properly identify that
the key must remain secure. Specifically,
page 83 of the book states:

Most states exempt individuals
and businesses from data breach
notification and disclosure
requirements if the data was
encrypted when lost, …. However,
the encryption exception typically
applies only when the key remains
secure. Most states make this
explicit by stating that the exception
does not apply when the decryption
key is breached along with the
encrypted data. (emphasis added)

Although this guidance does reflect a more
thorough comprehension of the threat
situation, it does not address all of the
likely vulnerabilities, nor does it highlight
that the key is likely vulnerable to theft
or compromise in many — if not most
— common data processing scenarios.
The vulnerability chart identifies four
encryption scenarios (A–D) and seven
vulnerabilities (1–7), and indicates degrees
of vulnerability for each pairing.

The left-most two encryption scenarios, A
and B, in which encrypted data is accessible
by a processor and a software application

that operates on that data in cleartext form
(unencrypted or decrypted state), is the
most common. This is because encryption
scenarios A and B are the common
situations in which data is accessible for
use in processing. It can be viewed, edited
and otherwise used. The right-most two
encryption scenarios, C and D, are typically
only encountered in offline backup archive
situations.

For example, if a database is stored on a
network drive, encrypted at rest, but is
automatically decrypted when someone
attempts to access the database, this is
encryption scenario A. If a password is
needed to open the file, this is encryption
scenario B. The physical action in that
scenario is the typing of the password,
which is then used to generate the
decryption key in a “just-in-time” manner.
A less common but still somewhat widely
used version of encryption scenario B
is that the decryption key is stored on a
piece of hardware, such as a USB dongle
or optical disk. Perhaps the most common
version of encryption scenario B, though, is
a notebook computer with an encrypted the
hard drive for which a password is required
to unlock the hard drive encryption.

Note that there are differences between
moving a key “out of band” so that it is
not co-located with the encrypted data.
Encryption scenarios A and B are identified
in the chart as separate, but there are
actually myriad scenarios that are a blend,
perhaps closer to one of the scenarios than
the other.

Some organizations create backups of their
data and store those back-ups in an archive
that is both off-site and offline. If the
backup is encrypted and the key is never
placed on any node that is accessible to
the network on which the backup is stored,
this is encryption scenario D. This scenario

International Association of Privacy Professsionals
iapp.org

4

Encryption Scenario

Encrypted data is accessible by a
processor and software application
that operates on it in cleartext form.

Encrypted data is not accessible by a
processor or software application that

operates on it in cleartext form.

Method of
Compromise

A.	 Key material is
accessible by a
processor and
automatically
decrypts data
for use by
software.

Common

B.	 Key material is
not accessible
by a processor
until physical
action decrypts
data for use by
software.

Common

C.	 Key material
is accessible
by the same
network on
which the data
is archived.

D.	 Key material is
not accessible
by same
network on
which data is
archived, but is
kept physically
separate.

1.	 Data and key
are both stolen
at the same
time.

Vulnerable;
easy to decrypt Prevented Vulnerable;

easy to decrypt Prevented

2.	 Data and key
are stolen
in same
compromise,
different times.

Vulnerable to a
persistent threat

Vulnerable to a
persistent threat

Vulnerable to a
persistent threat Prevented

3.	 Data is stolen
when it is used
by software in
cleartext form.

Vulnerable;
timing is

important

Vulnerable;
timing is

important
Prevented Prevented

4.	 Data and key
are stolen
separately
in different
incidents.

Vulnerable;
possibly delayed

compromise

Vulnerable;
possibly delayed

compromise

Vulnerable;
possibly delayed

compromise

Vulnerable;
possibly delayed

compromise

5.	 Encryption is
weak; less than
256 bit.

Vulnerable;
easy to decrypt

Vulnerable;
easy to decrypt

Vulnerable;
easy to decrypt

Vulnerable;
easy to decrypt

6.	 Password is
weak; under 15
characters.

Vulnerable;
easy to decrypt

Vulnerable;
easy to decrypt

Vulnerable;
easy to decrypt

Vulnerable;
easy to decrypt

7.	 Sophisticated
attack limits
key entropy,
permits
guessing of key.

Vulnerable;
advanced stealth

threat

Vulnerable;
advanced stealth

threat

Vulnerable;
advanced stealth

threat

Vulnerable;
advanced stealth

threat

International Association of Privacy Professsionals
iapp.org

5

is the one with the lowest likelihood of
key compromise. Encryption scenario C is
included for conceptual completeness of the
chart, although it indicates a poor security
mindset and should hopefully be rare: The
backup is stored offline but the decryption
key is stored along with the encrypted data.

A glance at the chart reveals that the
common encryption scenarios A and B are
the most vulnerable to compromise of the
decryption key.

To summarize, the lesson here is that if the
encrypted data is stolen from an off-site,
offline backup archive, and the key was not
accessible by anyone who compromised
that system, then the reasoning behind
the encryption exception is more likely to
be valid than if the data was stolen from a
working directory of a system on which the
data was accessible for processing.

More analysis is needed, though, because
among other risks, there is a possibility
that the decryption key could have been
obtained via a different incident, even for
the most secure of the encryption scenarios,
scenario D.

We now move though explanations of the
vulnerabilities.

As a side note, the chart uses the phrase
“key material” to mean both a copy of the
key itself or, for systems that generate
keys for use and then erases them from
memory, the secret material that is used for
generating the key whenever it is needed.
A password that is typed into a keyboard
by a human is an example of key material
that is used (often via a hash algorithm)
to generate a key. There are other, more
complex versions of key material use, but
the concept is that either the key itself
or the key material contains the secret
information that is needed for decryption.

Another note of explanation is that, for
some encrypted data, the encryption key
is the same as the decryption key. This
is symmetric encryption, but there are
also systems in which the encryption and
decryption keys are different.

Vulnerability #1: Data and key are
both stolen at the same time.

The simple matter is that if authorized users
can automatically decrypt the data to read,
edit or otherwise use the data, then the key
must necessarily be accessible by at least
one system on which the data is stored and
the software executes. Even a novice hacker
will have a chance of locating and stealing
the key.

In the seven-minute defeat mentioned
earlier, the people issuing me the
challenge had planned to create a version
of encryption scenario B, in which the
decryption key was kept only on an
optical disk. The challenge was for me
to open the file (to run an encrypted
executable program) without the benefit
of the decryption key on the optical disk.
However, AES-256 is symmetric encryption,
so the decryption key was the same as the
encryption key. Someone who encrypted
the file forgot to delete the encryption key,
thereby inadvertently creating what the
chart describes as encryption scenario A.

This was nothing more than a simple
human mistake. And which of us has never
forgotten to do something? It was such
an easy mistake — and likely one that
could also occur with your own systems,
unfortunately.

Encryption and decryption keys have
certain properties that make them easily
distinguishable from other types of
computer files. For example, if you are

International Association of Privacy Professsionals
iapp.org

6

reading this on a computing device, it may
have hundreds of thousands of files on it.
Common files, such as word processing
documents, JPEG images and audio
files, typically have a defined file format.
Executable program files typically contain
a high percentage of hexadecimal values
that correspond to machine language
instructions and, due to the operation
of compilers, typically contain a large
number of no-operation instructions. For
example, programs designed to run on
Intel processors have a high occurrence
of the hexadecimal number 90, which is
the machine language represented by the
assembly language mnemonic NOP.

In anticipation of the challenge, I had
written a program that would search
through all the files accessible on whatever
system I would target, reject those having a
defined-file format or a high occurrence of a
limited set of hexadecimal values, and thus
rapidly identify files having high entropy
(i.e., a high degree of randomness). When I
started the challenge, it was easy to identify
which one contained the key that had been
left by human error.

As a side note, if a password manager keeps
a local copy of the key library (although in
an encrypted state — that is the keys are
encrypted by a secondary encryption), and
multiple keys are in the key library, then
the file size will be multiple times larger
than the length of the key being sought by
a hacker. However, it will likely still contain
high entropy, meaning that it will have a
high degree of randomness.

If hackers can get into the system on
which the data is processed, and users
who process that data are able to decrypt
it in order to work with it, then the key is
accessible. If the hackers grab everything,
they might easily take the decryption
key material at the same time and can

search through their own copies of the
stolen files, at their leisure, using a tool
that is designed to identify possible key
material. Therefore, it is important that,
during an incident breach response, the
investigation does not stop at looking over
the key management policy but continues
on to perform forensics of the actual key
management activities and searches for a
copy on all systems that the intruder could
have accessed.

Common encryption scenario A is easily
vulnerable to this type of threat.

Vulnerability #2: Data and key are
stolen in same compromise but at
different times.

In the situation of a persistent threat, in
which an intruder keeps a presence on a
compromised system for an extended period
of time, then encryption scenario B also
becomes vulnerable. In some situations, a
hacker might only be in the system for a
short period of time before leaving or being
discovered and blocked.

However, persistent threats, such as the
10-year presence of Chinese spyware on
Nortel’s computer systems, are quite
common. So, even if the decryption key is
not automatically accessible whenever a
user attempts to open an encrypted data
file, the key can easily be compromised if
a user decrypts the data even a single time
during the period in which a hacker has
access.

If hackers can get into the system on
which the data is processed, and users

who process that data are able to
decrypt it in order to work with it, then

the key is accessible

International Association of Privacy Professsionals
iapp.org

7

Vulnerability #3: Data is stolen
when it is used by software in
cleartext form.

In some situations, a skilled hacker can grab
data when it is in decrypted form without
ever requiring the decryption key. Here is
one example of how that can work:

You believe your email is relatively secure
because it is encrypted (both incoming
and outgoing), and local copies are stored
only in encrypted form. The key is carefully
managed by a program having sufficient
security to defeat most hackers’ best efforts.
However, if your email system permits
multiple simultaneous login sessions and
setting rules for incoming and outgoing
messages (such as automatically routing
messages to certain folders).

If a hacker ascertains your login credentials
somehow, logs in to your email account, and
sets two rules — one to send all incoming
mail to your trash folder and another to
turn off notification of unread emails that
are in the trash folder — then the hacker
monitors the trash folder, while you are
looking only at the inbox and are entirely
unaware of the problem. As a new email
comes in, it is routed to the trash folder and
decrypted for the hacker to read.

The hacker can use the email program to
copy the data and files to their own system
and then move the new message into the
inbox, where you see it and mistakenly
believe it to have just arrived. In this
situation, the hacker has defeated both the
encryption of the email during transmission,
as well as the local email storage, all without
ever needing to compromise any decryption
key.

Did you have any idea that a data
compromise could be so easy? So then
… what are your thoughts about that

encryption exception now? And we’re not
done with the bad news, yet.

Vulnerability #4: Data and key
are stolen separately in different
incidents.

Here is a threat situation to which all of
the encryption scenarios — A through D
— are vulnerable: The hacker gets the data
at one time, and in a separate (possibly
undetected!) incident, obtains the key
separately. There are some important things
to contemplate:

1.	 Incidents should not be examined
alone but rather should be
examined for possible data and
key pairings being stolen in
different incidents.

a.	 If data had been stolen, check
whether the decryption key for
that data might have been sto-
len during a prior incident, and

b.	 If a decryption key had been
stolen, then all prior compro-
mises of data that can now
be decrypted, suddenly be-
comes a breach – even if you
had properly qualified for the
encryption exception during
those earlier incidents.

2.	 If the data had been encrypted
with symmetric encryption, it
might be a good idea to stop
using the key chat corresponds
to the stolen data so that
all copies can be destroyed.
Not deleted but thoroughly
destroyed. If you keep a “just-
in-case” copy for yourself, then
it might be compromised in a
future incident.

International Association of Privacy Professsionals
iapp.org

8

Just a question here: Does your incident
response plan include these suggestions of
analyzing multiple incidents for separate
data and key theft events that could, in
combination, result in a compromise? What
about changing keys, even if only data was
stolen and the key had remained secure?

Vulnerability #5: Encryption is
weak, less than 256 bit.

I have heard reports about companies that
securely dispose of used hard drives from
hospitals finding that the data is encrypted
with 16-bit encryption. Think about that for
a minute.

16-bit encryption is so trivially easy to crack
with modern computers that it is effectively
useless for anything other than annoying
the hackers. It certainly won’t stop the good
ones.

But it’s compliant, right? What does the
GDPR say about using 16-bit encryption
instead of 256? Can you find anything
specifying minimum key length? The Article
29 Working Party guidelines clarified as
“state-of-the-art encryption,” “appropriate
level of encryption,” and “considered
currently adequate by security experts.”
Presumably, this can be interpreted as 256-
bit or higher with a vetted algorithm.

Vulnerability #6: Password is
weak, under 15 characters.

How clever is your password? Does it use
non-standard characters? Good. But if it is
less than 15 characters, no matter how bizarre
the set of characters, someone has already
included it in a list that hackers use, called
a rainbow table. Rainbow tables are lists of
password data (precomputed hash values)
that can be used for rapidly breaking into
many systems that require password logins.

A good suggestion for passwords is to
use one that is 15 characters long or
more, along with a secure password
manager. To make the password easier to
remember, consider stringing together a
set of four misspelled words that you can
associate with an image in your mind.
Something silly, painful or exaggerated in
dimensions will be easier to remember. Try
something like a description of a person,
a profession, an action and some object.

An example could be visualizing a barber
using the scissors to cut off a person’s
ear lobes, instead of their hair, and then
type “tall*barber*cutting*ears.” This is a
horrifying thought, but if you concentrate
on a visualization for even just a few
seconds, it will be easy to remember. Pick
something that rings unique to you and
is similarly easy to remember for your
important passwords.

Vulnerability #7: Sophisticated
attack limits key entropy, permits
guessing of key.

This type of compromise is exceptionally
stealthy and can persist for years without
detection. To implement it, a sophisticated
hacker inserts some type of program
onto your computer system so that,
whenever one of your programs generates
an encryption key, the key is limited to
being one of a small set of possibilities.
To understand this type of hack, you need
to understand the difference between key
length and key entropy.

16-bit encryption is so trivially easy to
crack with modern computers that it is
effectively useless for anything other

than annoying the hackers

International Association of Privacy Professsionals
iapp.org

9

Have you ever seen one of the encryption
keys you rely upon to keep your data
secure? Probably not. And even if you did
look at it, it would appear to be random
gibberish to you. The security of encryption
is provided by the key being able to take
on so many different possible values that
a hacker or eavesdropper cannot possibly
guess all of them.

Computers process instructions and data
in a deterministic manner rather than
randomly. However, to generate a good
encryption key, the computer needs to
locate a source of random information
and convert it into data for key material.
One way is for the computer to use some
type of interaction with a human, such
as measuring the hundredths of a second
between keyboard presses when the person
is typing. Some computers have special
circuitry that takes some measurement
(such as temperature or electrical noise
impulses) and convert these into random
numbers.

The problem is that whatever process
converts these sources of random
information into an encryption key is often
implemented in software. If a sophisticated
hacker can modify that software so that
whatever random data is supposedly used,
the randomness it is limited down to is
only a few thousand possibilities. Limiting
the degree of randomness in some data
stream is one way to limit entropy. While
it may be computationally infeasible
to guess all possible keys in a state-of-
the-art encryption scheme, guessing
only a few thousand is relatively easy.
And unfortunately, a human looking at
encryption keys cannot reliably ascertain
whether the set of keys has been limited to
a set of possibilities that is computationally
feasible to crack in a brute force attack.

Imagine such a hack had been implemented
on your computer system. How would you
ever know? Even if you generated and
compared thousands of encryption keys, as
some sort of test, you might not detect it.

So, if a good hacker knew they would be
eavesdropping on some company’s email
traffic or breaking in to their systems to
steal encrypted data, they might invest
the time in attempting to surreptitiously
modify the source of the entropy used by
whatever random number generator that
the encryption program used for generating
keys. Then, they could read all the stolen (or
intercepted) data without anyone having
any idea.

Interestingly, the Article 29 Data Protection
Working Party guidelines from October 3,
2017, appear to address something similar to
this type of vulnerability:

However, if the confidentiality of
the key is intact — i.e., the key was
not compromised in any security
breach, and was generated so that it
cannot be ascertained by available
technical means by any person
who is not authorised to access
it – then the data are in principle
unintelligible. (emphasis added)

Conclusion

In view of all these vulnerabilities, it is
apparent that some dedicated analysis may
be required for deciding whether a theft
of encrypted data is merely an incident,
qualifying for the encryption exception, or
might instead be a full-fledged breach. An
overly simplistic reasoning that the data was
encrypted, so there is no breach — without
analyzing key management risks — may
cause under-reporting of breach incidents.

